Chemogenomics knowledgebased polypharmacology analyses of drug abuse related G-protein coupled receptors and their ligands
نویسندگان
چکیده
Drug abuse (DA) and addiction is a complex illness, broadly viewed as a neurobiological impairment with genetic and environmental factors that influence its development and manifestation. Abused substances can disrupt the activity of neurons by interacting with many proteins, particularly G-protein coupled receptors (GPCRs). A few medicines that target the central nervous system (CNS) can also modulate DA related proteins, such as GPCRs, which can act in conjunction with the controlled psychoactive substance(s) and increase side effects. To fully explore the molecular interaction networks that underlie DA and to effectively modulate the GPCRs in these networks with small molecules for DA treatment, we built a drug-abuse domain specific chemogenomics knowledgebase (DA-KB) to centralize the reported chemogenomics research information related to DA and CNS disorders in an effort to benefit researchers across a broad range of disciplines. We then focus on the analysis of GPCRs as many of them are closely related with DA. Their distribution in human tissues was also analyzed for the study of side effects caused by abused drugs. We further implement our computational algorithms/tools to explore DA targets, DA mechanisms and pathways involved in polydrug addiction and to explore polypharmacological effects of the GPCR ligands. Finally, the polypharmacology effects of GPCRs-targeted medicines for DA treatment were investigated and such effects can be exploited for the development of drugs with polypharmacophore for DA intervention. The chemogenomics database and the analysis tools will help us better understand the mechanism of drugs abuse and facilitate to design new medications for system pharmacotherapy of DA.
منابع مشابه
Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders
Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...
متن کاملChemogenomics in drug discovery.
Chemogenomics is a new strategy in drug discovery which, in principle, searches for all molecules that are capable of interacting with any biological target. Because of the almost infinite number of drug-like organic molecules, this is an impossible task. Therefore chemogenomics has been defined as the investigation of classes of compounds (libraries) against families of functionally related pr...
متن کاملChemogenomics: structuring the drug discovery process to gene families.
In the post-genomic era, if all proteins in a gene family can putatively be identified, how can drug discovery effectively tackle so many novel targets that might lack structural and small-molecule inhibitory data? In response, chemogenomics, a new approach that guides drug discovery based on gene families, has been developed. By integrating all information available within a protein family (se...
متن کاملProtein-ligand interaction prediction: an improved chemogenomics approach
MOTIVATION Predicting interactions between small molecules and proteins is a crucial step to decipher many biological processes, and plays a critical role in drug discovery. When no detailed 3D structure of the protein target is available, ligand-based virtual screening allows the construction of predictive models by learning to discriminate known ligands from non-ligands. However, the accuracy...
متن کاملAlzPlatform: An Alzheimer’s Disease Domain-Specific Chemogenomics Knowledgebase for Polypharmacology and Target Identification Research
Alzheimer's disease (AD) is one of the most complicated progressive neurodegeneration diseases that involve many genes, proteins, and their complex interactions. No effective medicines or treatments are available yet to stop or reverse the progression of the disease due to its polygenic nature. To facilitate discovery of new AD drugs and better understand the AD neurosignaling pathways involved...
متن کامل